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General Motivation: Develop efficient computational tools to help

I Predict flow behavior

I Understand flow instabilities

Challenges

I inertial and viscous forces occur on disparate scales

I discrete systems are non-symmetric & poorly conditioned
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Conventional Methods use Operator Splitting

I Based on Fast Poisson Solvers LU, SOR, FDM, Cyclic
Reduction, Multigrid

I Limited by CFL condition ∆t ≤ C ∆x
U
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Deleted Scenes

Modern Methods: Newton-Krylov-Schwarz

I Nonlinear solver (Picard/Newton) used to solve nonlinear
system

I Krylov subspace method used to solve subsidiary linear system

I Domain Decomposition scheme used to precondition linear
system

I Require Fast Convection-Diffusion Solvers
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Plan:

I use spectral element method for an accurate discretization

I develop fast solvers that take advantage of the structure of
the discrete system
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Spectral Element Discretization

Variables on each element are expressed via a nodal basis

ue
N(x , y) =

N∑
i=0

N∑
j=0

uijπ
N
i (x)πN

j (y) (1)
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Variables on element interfaces are coupled using an averaging
operation

Σ′ = Q︸︷︷︸
scatter

WL︸︷︷︸
weight

QT︸︷︷︸
sum

(2)
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Figure: (Left) Global and (Right) Local ordering of the degrees of
freedom.
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Domain Decomposition
Fast Diagonalization: Interior Solver
Schur Compliment: Interface Solver
Constant-wind convection-diffusion systems
General convection-diffusion systems
Steady Navier-Stokes Equations

Convection-Diffusion

−ε∇2u + ~w · ∇u = f (3)

Navier-Stokes
−ν∇2~u + ~u · ∇~u +∇p = f

−∇ · ~u = 0
(4)
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Break problem into 3 cases

I Convection-Diffusion systems with constant wind field on each
element ~w = (wx ,wy )

I General Convection-Diffusion systems
~w = (wx(x , y),wy (x , y))

I Linearized Navier-Stokes systems convection field ~u obtained
from nonlinear iteration
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Start with the Discrete weak form of the convection-diffusion
equation

F (w)u = b (5)

F e(w e) = F e
x + F e

y

F e
x = ε(M̂ ⊗ hy

hx
Â)︸ ︷︷ ︸

Diffusion in x

+W e
x (M̂ ⊗ hy

2
Ĉ )︸ ︷︷ ︸

Convection in x

F e
y = ε(

hx

hy
Â⊗ M̂)︸ ︷︷ ︸

Diffusion in y

+W e
y (

hx

2
Ĉ ⊗ M̂)︸ ︷︷ ︸

Convection in y

.

(6)
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Key Idea: for constant winds

F e(wx ,wy ) = M̂ ⊗ F̂x + F̂y ⊗ M̂ =: F̄ e (7)

I use an iterative solver on elemental interfaces
I diagonalize 1D operators in element interiors

P. Aaron Lott Ph.D Final Oral Exam



Motivation & Scientific Context
Spectral Element Discretization

Fast Solvers for Models of Steady Fluid Flow
Summary and Future Directions

Deleted Scenes

Domain Decomposition
Fast Diagonalization: Interior Solver
Schur Compliment: Interface Solver
Constant-wind convection-diffusion systems
General convection-diffusion systems
Steady Navier-Stokes Equations

Formally order nodes by interior and boundary nodes
F̄ 1

II 0 . . . 0 F̄ 1
IΓ

0 F̄ 2
II 0 . . . F̄ 2

IΓ
...

. . .
. . .

. . .
...

0 0 . . . F̄E
II F̄E

IΓ

F̄ 1
ΓI F̄ 2

ΓI . . . F̄E
IΓ F̄ΓΓ




uI 1

uI 2

...
uIE

uΓ

 =


b̂I 1

b̂I 2

...

b̂IE

b̂Γ

 .

LU decomposition of the system matrix gives us


I 0 . . . 0 0
0 I 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 I 0

F̄ 1
ΓI F̄ 1

II
−1

F̄ 2
ΓI F̄ 2

II
−1

. . . F̄E
ΓI F̄E

II
−1

I




F̄ 1

II 0 . . . 0 F̄ 1
IΓ

0 F̄ 2
II 0 . . . F̄ 2

IΓ
...

. . .
. . .

. . .
...

0 0 . . . F̄E
II F̄E

IΓ

0 0 . . . 0 F̄S
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F̄ 1

II 0 . . . 0 F̄ 1
IΓ

0 F̄ 2
II 0 . . . F̄ 2

IΓ
...

. . .
. . .

. . .
...

0 0 . . . F̄E
II F̄E

IΓ

0 0 . . . 0 F̄S




uI 1

uI 2

...
uIE

uΓ

 =


b̂I 1

b̂I 2

...

b̂IE

gΓ


F̄S =

∑E
e=1(F̄

e
ΓΓ − F̄ e

ΓI F̄ e
II
−1

F̄ e
IΓ) represents the Schur complement

of the system.
Almost a direct solver via a 3 step procedure:

I Compute gΓ (Lower Triangular)

I Solve F̄SuΓ = gΓ via preconditioned GMRES

I Back solve for elemental interiors ue
I , using F e

II
−1 (Upper

Triangular)
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F e(wx ,wy ) = M̂ ⊗ F̂x + F̂y ⊗ M̂ =: F̄ e (8)

Write F̄ e = M̃F̃ eM̃ and diagonalizae F̃ e .

F̃ e = M̃−1/2F̄ eM̃−1/2 (9)

= (M̂−1/2 ⊗ M̂−1/2)(M̂ ⊗ F̂x + F̂y ⊗ M̂)(M̂−1/2 ⊗ M̂−1/2)

= (I ⊗ M̂−1/2F̂xM̂
−1/2) + (M̂−1/2F̂yM̂−1/2 ⊗ I )

= (I ⊗ B) + (A⊗ I ).

F̄ e −1
= M̃−1(Vy ⊗ Vx)(Λy ⊗ I + I ⊗ Λx)

−1(V−1
y ⊗ V−1

x )M̃−1

I All based on Tensor Products of 1D operators

I Extends to 3D problems
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The interface problem can be solved via GMRES, and
Matrix-Vector products can be applied element-wise

F̄SuΓ = gΓ

E∑
e=1

(F̄ e
ΓΓ − F̄ e

ΓI F̄ e
II
−1

F̄ e
IΓ)︸ ︷︷ ︸

F̄S

uΓ︸︷︷︸
uΓ

=
E∑

e=1

(b̂Γe − F̄ e
ΓI F̄ e

II
−1

b̂I e )︸ ︷︷ ︸
gΓ

.

We use a preconditioner of the form

E∑
e=1

D(e)RT
e

(
F̄ e

S

)−1
ReD

(e), (10)

which can be applied as

F̄
(e)
S

−1
v = (0 I ) F̄ (e)−1

(
0

I

)
v . (11)
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Grid Aligned Flow with Analytical Solution

u(x , y) = x

(
1− e(y−1)/ε

1− e−2/ε

)
. (12)

Figure: Computed solution and contours of steady convection diffusion
flow with constant wind ~w = (0, 1) and moderate convection Pe = 40.
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N ‖u − uN‖2 None N-N R-R 1
h
(1 + log(N))2

4 5.535× 10−2 3 3 3 5.6

8 2.505× 10−3 7 7 7 9.4

16 2.423× 10−7 15 11 14 14.2

32 7.931× 10−13 30 16 18 19.9

E ‖u − uN‖2 13h3 None N-N R-R 1
h
(1 + log(N))2

16 8.594× 10−2 2.031× 10−1 13 13 12 11.5

64 2.593× 10−2 2.523× 10−2 49 47 25 22.9

256 3.558× 10−3 3.174× 10−3 108 88 45 45.9

1024 3.610× 10−4 3.967× 10−4 312 180 85 91.7

Table: Pe=40, polynomial degree is varied with a fixed 2× 2 element grid
(top) and the number of quadratic (N=2) elements are varied (bottom).
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Pe None N-N R-R

125 85 92 35

250 79 98 30

500 81 119 25

1000 103 164 27

2000 160 > 200 38

5000 > 200 > 200 74

Table: Comparison of iteration counts for example 1 with increasingly
convection-dominated flows. N=8, E=256 using 16× 16 element grid.
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Oblique flow with internal and outflow boundary layers
w = (−sin(π/6), cos(π/6))

Figure: Velocity (left) and contours (right) of a convection-dominated
steady convection-diffusion flow, Pe = 250, corresponding to example 2.
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N None N-N R-R

4 13 13 13

8 25 25 18

16 36 28 20

32 50 29 21

E None N-N R-R

16 29 33 21

64 40 63 26

256 69 117 46

1024 132 > 200 87

Table: Pe=40, fixed 2× 2 element grid
(top), quadratic (N=2) (bottom).

Pe None N-N R-R

125 93 104 38

250 75 98 32

500 64 115 27

1000 69 150 30

2000 99 > 200 41

5000 > 200 > 200 94

Table: N=8, E=256 using 16× 16 element
grid.
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Recap for constant wind problems

I GMRES with RR converges in roughly C
h (1 + log(N))2, where

C grows with Pe

I algorithm has mild dependence on Pe ( C ranged from ∼ .5
to ∼ 1.25 )

Next: apply this technology to non-constant wind problems.
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Double Glazing problem - recirculating wind

~w = (y(1− x2),−x(1− y2))

Figure: Solution corresponding to Peclet
number= 400 N=4, E=12x12

Figure: Depiction of a constant wind
approximation
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Non-constant wind solution algorithm

When the wind is non-constant, we use F̄ as Preconditioner to
accelerate convergence of GMRES.

F (~w)F̄ (w̄)−1F̄ (w̄)u = Mf

I FGMRES (outer iteration F )

I Domain Decomposition Preconditioner F̄

I Interior Subdomain Solver - FDM
I Interface Solver - GMRES (inner iteration F̄S)

I Inexact Solve
I Robin-Robin Preconditioner
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Figure: Convergence comparison of outer GMRES iterations needed
depending on number of interface solve steps taken. Peclet number= 400
P=4, E=12x12
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Figure: Comparison of residuals for interface iterations obtained by
GMRES without preconditioning and with Robin-Robin preconditioning
(left). Affect on FGMRES residuals with inexact F̄−1 using no interface
preconditioner and Robin Robin (right).
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Number of FGMRES Number of
N Outer Iterations Inner Iterations

4 40 5

8 51 5

16 44 13

32 48 20

Number of FGMRES Number of
E Outer Iterations Inner Iterations

16 40 5

64 25 12

256 17 19

1024 28 20

Table: Pe = 400 fixed 4× 4 element grid (top), N = 4(bottom).
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Number of FGMRES Number of
Pe Outer Iterations Inner Iterations

125 14 20

250 16 16

500 19 18

1000 24 18

2000 34 16

5000 67 13

Table: Peclet number is increased on a fixed grid N = 8 and E = 256.
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Recap for convection-diffusion problems

I for constant wind problems use Domain Decomposition Solver

I for non-constant wind problems use (inexact) Domain
Decomposition as Preconditioner for FGMRES

Next: apply this technology to steady Navier-Stokes problems.
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Steady Navier-Stokes equations

−ν∇2~u + ~u · ∇~u +∇p = f (13)

−∇ · ~u = 0

Discrete weak form:[
F (u) −DT

−D 0

](
u
p

)
=

(
b
0

)
. (14)
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Steady Navier-Stokes Solution Algorithm Overview

I Nonlinear iteration (Picard)

I Linear iteration (Block FGMRES)

I Block LSC Preconditioner

P =

[
F̄ −DT

0 −PS

]
. (15)

I Domain Decomposition and FDM for F̄ Block
I Conjugate Gradient Method for PS block
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Nonlinear system solved via Picard Iteration xk+1 = xk + δxk

with updates δxk obtained by solving[
F (uk) −DT

−D 0

](
δuk

δpk

)
︸ ︷︷ ︸

δxk

=

(
f − (F (uk) + DTpk)

DTuk

)
.

Our block preconditioner is based on the upper block of LU
factorization[

F −DT

−D 0

]
=

[
I 0

−DF−1 I

] [
F −DT

0 −S

]
. (16)
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Least Squares Commutator:
if εh = (M−1F )(M−1DT )− (M−1DT )(M−1

p Fp) is small, then

DF−1DT ≈ DM−1DTF−1
p Mp (17)

Fp is constructed to make εh small by minimizing an L2 norm of εh
via least-squares i.e.

min‖[M−1FM−1DT ]j − [M−1DTM−1
p [Fp]j ]‖M (18)

Ps = (DM−1DT )(DM−1FM−1DT )−1(DM−1DT ) (19)
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Lid-Driven Cavity

Figure: Streamline plot (left) and pressure plot (right) of Lid-Driven
Cavity with Re = 2000.

P. Aaron Lott Ph.D Final Oral Exam



Motivation & Scientific Context
Spectral Element Discretization

Fast Solvers for Models of Steady Fluid Flow
Summary and Future Directions

Deleted Scenes

Domain Decomposition
Fast Diagonalization: Interior Solver
Schur Compliment: Interface Solver
Constant-wind convection-diffusion systems
General convection-diffusion systems
Steady Navier-Stokes Equations

Figure: Comparison of linear residuals for Re = 100 (left) and Re = 1000
(right) using FGMRES based on solving F̄−1

S to a tolerance of 10−1

(blue), 10−2 (red), 10−4 (beneath black) and 10−8 (black).
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N Picard FGMRES F̄−1
S P−1

S

steps steps steps steps

2 16 20 14 8

4 9 32 16 60

8 8 38 24 139

16 8 54 33 200

E Picard FGMRES F̄−1
S P−1

S

steps steps steps steps

16 16 20 14 8

64 12 26 32 22

256 9 37 94 45

1024 8 55 200 87

Table: Re = 100. N is varied as E = 16 on a fixed 4× 4 element grid
(top). E is varied as N = 4 is fixed (bottom).
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Re Picard FGMRES F̄−1
S P−1

S

steps steps steps steps

10 5 30 186 200

100 7 42 141 200

500 9 57 130 200

1000 11 96 119 200

2000 15 194 145 200

5000 20 240 107 200

Table: Re is increased on a fixed grid N = 8 and E = 256.
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Kovasznay Flow - Analytical Solution

Figure: Re = 40 Streamline plot of Kovasznay Flow (left). Spectral
convergence on fixed 4× 6 element grid (right).
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N
‖ux−uN

x ‖2

‖ux‖2

‖uy−uN
y ‖2

‖uy‖2
Picard FGMRES F̄−1

S P−1
S

steps steps steps steps

4 6.8× 10−4 2.2× 10−3 12 42 4 27

5 2.6× 10−5 8.0× 10−5 12 39 4 35

6 3.6× 10−6 2.0× 10−5 15 35 3 22

7 2.5× 10−8 3.1× 10−7 18 32 3 25

8 1.1× 10−9 1.8× 10−8 23 27 4 28

9 5.1× 10−11 8.8× 10−10 27 26 5 45

10 2.0× 10−12 4.2× 10−11 29 24 6 74

11 8.1× 10−14 1.8× 10−12 30 24 5 58

12 3.1× 10−15 7.0× 10−14 36 24 10 72

Table: Re=40, on a fixed 4× 6 element grid.
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Flow over a step

Figure: Streamline plot (left) and pressure plot (right) of flow over a step
with Re = 200.
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Re N Picard FGMRES F̄−1
S P−1

S

steps steps steps steps

10 4 4 14 22 66

100 4 6 22 16 27

200 4 7 33 14 20

10 8 4 22 34 59

100 8 5 31 25 39

200 8 7 31 23 39

10 16 4 42 42 106

100 16 5 57 38 200

200 16 6 69 34 72

Table: Increasing Reynolds number and N using a fixed 8× 2 element
grid.
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Re E Picard FGMRES F̄−1
S P−1

S

steps steps steps steps

10 16 4 14 22 66

100 16 6 22 16 27

200 16 7 33 14 20

10 64 4 16 56 47

100 64 5 22 34 24

200 64 7 28 32 28

10 256 4 28 109 124

100 256 5 31 94 48

200 256 6 34 86 38

Table: Increasing Reynolds number and E with N = 4 fixed.
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Developed Solvers for 3 models of steady fluid flow

I Convection-Diffusion with constant wind

I Convection-Diffusion with non-constant wind

I Steady Navier-Stokes

Solvers are robust

I grid aligned, oblique, rotating, enclosed flows, outflows

I slight dependence on mesh size and Peclet/Reynolds number
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Primary Contributions

I extended use of FDM to steady convection-diffusion problems

I extended Least-Squares commutator to Matrix-Free SEM
framework
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Future Directions

I Use in stability analysis & Implicit time integration methods
for flow studies

I Extend to 3D. FDM very competitive against LU O(n4) vs.
O(n6)

I Extend to Parallel Architectures using second level of Σ′
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Thank You.
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Figure: 4th Order 2D Lagrangian nodal basis functions πi ⊗ πj based on
the Gauss-Labotto-Legendre points.
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Convection-Diffusion Operator

ε

∫
Ωe

∇u · ∇v +

∫
Ωe

(~w · ∇u)v (20)

F e = [F e
ij ], F e

ij =

∫
Ωe

∇πi · ∇πj +

∫
Ωe

(~w · ∇πj)πi (21)
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Divergence Operator∫
Ωe

q(∇ · ~u) =
hy

2

∫ 1

−1
πN−2,k

∂πN,i

∂x
+

hx

2

∫ 1

−1
πN−2,k

∂πN,i

∂y
. (22)

Applying Gauss-Legendre quadrature yields the discrete form

De
ij =

2∑
d=1

N∑
i ,j=1

πN−2,i (ηi )πN−2,j(ηj)
∂πN

∂xd
(ηi , ηj)σiσj , (23)
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ae(u, v) =

∫
Ωe

(ε∇u · ∇v + (~w · ∇u)v), (24)

which can be derived from the element-based Neumann problem

−ε∇2u + (~w · ∇)u = f in Ωe , (25)

−ε
∂u

∂n
= 0 on Γe . (26)
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ae(u, v) =

∫
Ωe

(ε∇u · ∇v + (~w · ∇u)v)−
∫

Γi

~w · ~nuv , (27)

which corresponds to the element-based Robin problem

−ε∇2u + (~w · ∇)u = f in Ωe , (28)

−ε
∂u

∂n
+ ~w · ~nu = 0 on Γe . (29)
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If the function u ∈ Hs
0(Ω)× Hs−1(Ω) having smoothness s, then

‖u − uN‖ ≤ Chmin(N,s)N−s‖u‖Hs
0(Ω).
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